Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner.
نویسندگان
چکیده
Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. To noninvasively assess the angiogenic profile of tumors, novel alpha(v)beta(3) integrin-targeted ultrasmall superparamagnetic iron oxide particles (USPIOs) were designed and their specific uptake by endothelial cells was evaluated in vitro and in vivo. USPIOs were coated with 3-aminopropyltrimethoxysilane (APTMS) and conjugated with Arg-Gly-Asp (RGD) peptides. Accumulation in human umbilical vein endothelial cells (HUVECs) was evaluated using Prussian blue staining, transmission electron microscopy, magnetic resonance (MR) imaging, and inductively coupled plasma mass spectrometry. Uptake of RGD-USPIO by HUVECs was significantly increased when compared with unlabeled USPIO and could be competitively inhibited by addition of unbound RGD. The ability of the RGD-USPIO to noninvasively distinguish tumors with high (HaCaT-ras-A-5RT3) and lower (A431) area fractions of alpha(v)beta(3) integrin-positive vessels was evaluated using a 1.5-T MR scanner. Indeed, after RGD-USPIO injection, there was a more pronounced decrease in T(2) relaxation times in HaCaT-ras-A-5RT3 tumors than in A431 tumors. Furthermore, T(2)*-weighted images clearly identified the heterogeneous arrangement of vessels with alpha(v)beta(3) integrins in HaCaT-ras-A-5RT3 tumors by an irregular signal intensity decrease. In contrast, in A431 tumors with predominantly small and uniformly distributed vessels, the signal intensity decreased more homogeneously. In summary, RGD-coupled, APTMS-coated USPIOs efficiently label alpha(v)beta(3) integrins expressed on endothelial cells. Furthermore, these molecular MR imaging probes are capable of distinguishing tumors differing in the degree of alpha(v)beta(3) integrin expression and in their angiogenesis profile even when using a clinical 1.5-T MR scanner.
منابع مشابه
Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles
PURPOSE Arginine-glycine-aspartic acid (RGD)-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA)-coated ultrasmall superparamagnetic iron oxide (USPIO) (referred to as RGD-PAA-USPIO) in order to detect tumor angiogenesis and assess the early response to antiangiogenic tre...
متن کاملOptimized multimodal nanoplatforms for targeting α(v)β3 integrins.
Magnetic Resonance Imaging (MRI) using contrast agents is a very powerful technique for diagnosis in clinical medicine and biomedical research. The synthesis of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles targeting αvβ3 integrins and acting as new MRI contrast agents seems to be a promising way for cancer diagnosis. Indeed, it is well established that αvβ3 integrin plays a key...
متن کاملSpecific targeting of nasopharyngeal carcinoma cell line CNE1 by C225-conjugated ultrasmall superparamagnetic iron oxide particles with magnetic resonance imaging.
An accurate definition of clinical target volume (CTV) is essential for the application of radiotherapy in nasopharyngeal carcinoma (NPC) treatment. A novel epidermal growth factor receptor (EGFR)-targeting contrast agent (C225-USPIO) was designed by conjugating ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with cetuximab (C225), to non-invasively define the CTV of tumor. The im...
متن کاملMolecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model
PURPOSE To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs) at different stages of liver fibrosis induced by carbon tetrachloride (CCl4) in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI) with arginine-glycine-aspartic acid (RGD) peptide modified ultrasmall superparamagnetic iron oxide nanoparticl...
متن کاملPreparation and in vitro studies of MRI-specific superparamagnetic iron oxide antiGPC3 probe for hepatocellular carcinoma
BACKGROUND The aim of this study was to develop an antiGPC3-ultrasuperparamagnetic iron oxide (USPIO) probe for early detection of hepatocellular carcinoma. METHODS GPC3 and AFP receptors were selected as biomarkers and conjugated with USPIO nanoparticles coated by dextran with carboxylate groups to synthesize antiGPC3-USPIO and antiAFP-USPIO probes. HepG2 cells (a human hepatocellular carcin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2007